Мои Конспекты
Главная | Обратная связь

...

Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Средняя интегральная разность концентраций.





Помощь в ✍️ написании работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Если равновесная кривая не является линейной, то средняя движущая сила вычисляется как средняя интегральная разность концентраций и определяется следующим образом. Запишем дифференциальное уравнение материального баланса для фазы G и уравнение массопередачи для элемента поверхности dF и , откуда . Интегрируя в пределах O-F, , получим при .

Значение находится методом графического интегрирования. Для этого берется ряд значений x (см. рис. ), находятся соответствующие значения и вычисляются величины , строится зависимость . (рис). Значение интеграла будет равно площади S, умноженной на масштаб a, тогда:

. Из уравнения выразим G и подставим , или (**)

 

 

Графическое определение

 

S

 
 


y

 

 

Сравним (**) с (ОУМП). Видно, что ( получили выражение для среднеинтегральной движущей силы.)

Записав дифференциальное уравнение материального баланса и уравнение массопередачи для фазы L, аналогично найдем:

, при и .

 

Доверь свою работу ✍️ кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой



Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.