Кристаллизационная структура образуется в молочном жире при кристаллизации глицеридов из расплава: при образовании кристаллитов внутри жировых шариков, при подготовке сливок к сбиванию, а больше всего при охлаждении и хранении масла. Особенно этот процесс ярко выражен при прохождении в больших объемах фазовых изменений глицеридов жира в покое в масле, полученном методом преобразования высокожирных сливок.
Масло хорошей консистенции представляет собой смешанную коагуляционно-кристаллизационную структуру с преобладанием свойств коагуляционной. Такая структура характерна для масла, выработанного методом сбивания.
Плазма, представляющая собой коллоидный раствор белковой фазы молока и сливок и водный раствор лактозы, минеральных и органических солей, молочной кислоты и др., находится в масле преимущественно в свободном состоянии и в виде капелек различной степени дисперсности. Основная масса находится в виде фазы из изолированных капелек в дисперсионной среде — жидком жире. Некоторая часть капелек влаги соединяется тончайшими протоками и канальцами, пронизывающими часть или всю массу монолита, и в этом случае плазма выступает как дисперсионная среда. Часть плазмы пребывает в связанном состоянии и прочно удерживается на поверхности жировых агрегатов. В нормальных условиях при хранении масла она не замерзает.
- В масле содержится также газовая фаза, состав и количест во которой зависят главным образом от метода получения масла, от степени механической обработки и режима хранения. Она присутствует в виде мельчайших пузырьков газа от 1 до 200 мкм (часть ее растворена в плазме). Пузырьки воздуха, адсорбирующие на своей поверхности жидкий жир, препятствуют его выделению из масла.
Газовая фаза придает маслу пористость и существенно влияет на его физико-химические свойства. В масле нормальной консистенции она служит как бы буфером при сжатии и расширении жира. При недостатке ее возникают высокие напряжения, приводящие к появлению в монолите масла трещин, избыточной твердости и хрупкости.
Степень дисперсности плазмы и воздуха существенно влияет на гомогенность структуры и механические свойства масла, В высокодисперсном состоянии плазма и газовая фаза настолько уплотнены силами поверхностного натяжения, что по степени влияния на консистенцию их можно приравнять к твердым частичкам по влиянию на механические свойства.
Консистенция масла выражает комплекс его физико-механических свойств: твердость, вязкость, пластичность, упругость, связность, гомогенность, термоустойчивость и др. Твердость и механическая прочность обусловлены количеством отвердевшего жира, создающего как бы «скелет» масла.
Пластические свойства масла зависят от типа структуры, величийы и формы кристаллов и кристаллитов глицеридов молочного жира, равномерности их распределения, от количества жидкого жира. Увеличение среднего размера кристаллов делает масло менее мягким, а уменьшение более твердым, одновременно повышая его пластичность и придавая ему гомогенность. Это связано с тем, что мелкие кристаллы с более развитой поверхностью обладают большими адсорбционными свойствами и смачиваемостью жидким жиром. Поры и щели в мелкокристаллической структуре так малы, что жидкий жир образует очень тонкие прослойки между кристаллами, обусловливая их малую подвижность относительно друг друга при механическом воздействии, а следовательно, и пластичность консистенции. Поэтому при повышенных температурах масло с мелкокристаллической структурой выделяет жидкий жир в меньшей степени, чем продукт с крупнокристаллической структурой.
Форма кристаллов и их величина влияют на образование коагуляционной и кристаллизационной структуры, от соотношения которых зависят вязкость, пластичность, хрупкость и твердость масла. Соотношение легкоплавких и высокоплавких групп глицеридов в отвердевшем жире, преобладание легкоплавких метастабильных либо высокоплавких и более стабильных полиморфных модификаций кристаллического жира оказывают определяющее влияние на термоустойчивость и реологические характеристики масла.
При использовании маслоизготовителей непрерывного действия при сбивании происходит значительное разрушение жировой дисперсии, при этом выделяется большое количество теплоты и при слабом его отводе приводит к расплавлению части ранее закристаллизованного жира и, следовательно, к увеличению объема жидкого жира. Последующая экструзионно-шнеко- вая обработка приведет к еще большему расплавлению отвердевшего жира. В результате в выработанном масле будет сравнительно большой объем жидкого жира, отвердевание которого будет происходить после выработки масла в покое из расплава с образованием крупных фракционных кристаллов, т. е. пойдет образование в значительном объеме необратимых кристаллизационных связей между структурными элементами.
Масло, выработанное в маслоизготовителях непрерывного действия, будет иметь больший объем кристаллизационной структуры, менее термоустойчиво, чем масло, выработанное в маслоизготовителях периодического действия.
Обработкой завершается окончательное формирование структуры и консистенции масла. При механическом воздействии и перемешивании разрушаются кристаллизационные конгломераты и окончательно завершаются фазовые изменения молочного жира, масло приобретает выраженные свойства коагу- ляционной структуры. Чем интенсивнее и длительнее обработка, тем в большей степени проходит необратимый процесс разрушения участков кристаллизационной структуры и тем больше опасность получения масла излишне мягкой, мажущейся консистенции.
С увеличением степени механической обработки и повышением температуры возрастает количество жидкой фракции, достигается более равномерное ее распределение, понижается твердость масла, повышается степень диспергирования плазмы и газовой фазы, увеличивается содержание воздуха, уменьшается количество протоков влаги, а вместе с тем повышаются связность, гомогенность, пластичность консистенции.
Дифференциально-термический анализ показывает наличие в твердой фазе жира двух основных групп смешанных кристаллов с максимальной температурой плавления при 17—21 °С (из легко- и среднеплавких глицеридов) и 29—33 °С (из высокоплавких глицеридов) при соотношении их друг к другу 2: 1.
На структуру и консистенцию масла влияет дисперсность водной фазы. В деревянном маслоизготовителе периодического действия вода присутствует в виде капель размером 15—60 мкм, в стальном цилиндрическом маслоизготовителе 10—25 мкм, в маслоизготовителе непрерывного действия в виде капель 3— 15 мкм. Мелкие кристаллики из высокоплавких глицеридов вследствие своей гидрофобной природы стабилизируют эмульсию воды в жире. В процессе хранения капельки плазмы могут укрупняться и дисперсность плазмы может снизиться, особенно при положительных температурах хранения. Коалесценция капель влаги наблюдается при недостаточно интенсивном механическом воздействии при фасовании и низких ее температурах.
Состав и дисперсность газовой фазы зависят главным образом от степени механической обработки и режима хранения. В масле, полученном в маслоизготовителях периодического действия, объем ее составляет от 1,5 до 3%, а непрерывного действия от 5,7 до 10%. При повышении температуры сбивания объем газовой фазы увеличивается, а при фасовании масла снижается почти в 2 раза. В масле, выработанном в маслоизготовителе периодического действия, дисперсность пузырьков меньше, они имеют разные размеры, а в масле непрерывного сбивания — дисперсность выше и пузырьки одинакового размера.
При фасовании масла среднее содержание воздуха уменьшается с 3,84 до 1,95%. С понижением содержания воздуха плотность масла повышается. Но чрезмерное снижение содержания воздуха в масле может обусловить выделение капель жидкого жира. Это связано с тем, что жидкий жир адсорбируется на поверхности пузырьков газа. При снижении их числа жидкий жир освобождается и выделяется в виде капель. При этом снижается пластичность масла. Эти явления наблюдаются при выработке масла под вакуумом.
Масло с повышенным содержанием воздуха имеет более рыхлую и хрупкую консистенцию, бледный оттенок в связи с рассеиванием света пузырьками воздуха.
Газовая фаза в масле выполняет функцию амортизатора, буфера между отдельными структурными элементами.
При хранении масла происходит некоторое повышение механической прочности (твердости), не изменяющей в целом консистенции свежевыработанного масла. Особенно интенсивно этот процесс наблюдается в первые дни хранения, а затем замедляется и завершается примерно через 15 дней. В это время из расплава жидкого жира легкоплавкие глицериды дополнительно выкристаллизовываются в виде очень мелких кристаллов при отрицательных температурах хранения. Кроме того, хоть' и медленно, но продолжаются процессы перекристаллизации: расплавление более мелких кристаллов за счет роста более крупных. Все это приводит к увеличению контактов кристаллических частиц друг с другом, а следовательно, и к повышению твердости масла.
Более выраженно этот процесс протекает в масле, выработанном из сливок, недостаточно глубоко охлажденных перед сбиванием. Близкие величины твердости масла до и после хранения при минусовых температурах являются показателем высокой степени обратимости процессов структурообразования при дополнительной кристаллизации легкоплавких глицеридов, которые могут расплавляться при повышенных температурах (комнатных).