Мои Конспекты
Главная | Обратная связь

...

Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Сила Лоренца. Движение заряженных частиц в магнитном поле.





Помощь в ✍️ написании работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Опыт показывает, что магнитное поле действует не только на проводники с током, но и на отдельные заряды, движущиеся в магнитном поле. Сила, действующая на заряд q ,движущийся в магнитном поле со скоростью , называется силой Лоренца.

 

- установлено опытным путем

Направление силы Лоренца определяется для положительных зарядов правилом левой руки (т.к. направление и для совпадают): если ладонь левой руки расположить так, чтобы вектор входил в нее, а 4 вытянутых пальца сонаправить с движением положительного заряда, то отогнутый большой палец покажет направление силы Лоренца.

Для отрицательных зарядов берется противоположное направление.

Сила Лоренца всегда направлена перпендикулярно скорости заряда и сообщает ему нормальное ускорение. Не изменяя модуля скорости, а лишь изменяя ее направление, сила Лоренца не совершает работы и кинетическая энергия заряженной частицы при движении в магнитном поле не изменяется.

Если на движущийся электрический заряд помимо магнитного поля действует и электрическое поле напряженностью , то результирующая сила

- формула Лоренца.

1. Движение заряженной частицы вдоль силовой линии, .

,

магнитное поле не действует на частицу.

Заряженная частица движется по инерции равномерно прямолинейно.

 

 

2. Движение заряженной частицы перпендикулярно силовым линиям, .

Пусть в однородное магнитное поле с индукцией влетела заряженная частица массой m с зарядом q перпендикулярно магнитным силовым линиям со скоростью .

В каждой точке поля на частицу действует . Т.к. , то . Ускорение изменяет только направление скорости, , значит, . В этих условиях тело (заряженная частица) движется равномерно по окружности.

Согласно II закону Ньютона:

(1)

Т.к. все величины, входящие в (1), постоянны, радиус кривизны R будет оставаться постоянным. Постоянный радиус кривизны имеет только окружность. Следовательно, движение заряда в плоскости, перпендикулярной магнитному полю, будет происходить по окружности. Чем больше , тем меньше R. При , т.е. заряд движется по прямой.

Важным результатом для приложения является тот факт, что период обращения заряда в однородном магнитном поле не зависит от его скорости.

 

если . (2)

Частицы, имеющие бóльшую скорость, движутся по окружности бóльшего радиуса, однако время одного полного оборота будет таким же, что и для более медленных частиц, движущихся по окружности меньшего радиуса. Данный результат положен в основу действия циклических ускорителей элементарных частиц.

 

3. Движение заряженной частицы произвольно по отношению к линиям магнитной индукции. Вектор скорости можно разложить на 2 составляющие:

В направлении сила Лоренца на заряд не действует, поэтому в этом направлении он движется равномерно, прямолинейно с . В направлении, перпендикулярном , он движется по окружности со скоростью Движение заряда представляет собой суперпозицию этих двух движений и происходит по винтовой линии, ось которой параллельна .

Радиус витка с учетом (1):

(3)

 

Шаг винтовой линии (расстояние между соседними витками)

с учетом (2):

.

Если движение происходит в неоднородном магнитном поле, индукция которого возрастает в направлении движения частицы, то R уменьшается с ростом В согласно (3). На этом основана фокусировка пучка заряженных частиц в магнитном поле. Таким образом, с помощью неоднородного магнитного поля можно управлять пучками заряженных частиц, собирать их или рассеивать подобно тому, как управляют поведением пучков световых лучей с помощью оптических линз.

Рассмотренный принцип положен в основу действия электронных микроскопов.

 

Доверь свою работу ✍️ кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой



Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.