Мои Конспекты
Главная | Обратная связь

...

Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Геоцентрическая система координат





Помощь в ✍️ написании работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Заметим, что геодезическая и геоцентрическая долготы совпадают. Обе они определены как двугранный угол между плоскостью нулевого меридиана и плоскостью, содержащей ось вращения и заданную точку. Геоцентрическая же широта отличается от геодезической.

Рассмотрим точку P, лежащую вне ОЗЭ. Опустим из этой точки перпендикуляр на поверхность эллипсоида и продолжим его до пересечения с экваториальной плоскостью (рис2) Проекцию точки P на поверхность эллипсоида обозначим через Q. Тогда отрезок PQ есть геодезическая высота точки Р. Угол, под которым упомянутый перпендикуляр пересекает плоскость экватора, есть геодезическая широта B. Она относится как к точке Q, так и к точке Р. Геоцентрические широты этих двух точек, как видно из рисунка, различаются. Геоцентрическая широта точки Q угол Ф между радиус-вектором этой точки и плоскостью экватора.

Установим связь между координатами точки Q, сжатием эллипсоида и широтами В и Ф. Поскольку точка Q лежит на поверхности эллипсоида, то её прямоугольные координаты подчиняются уравнению эллипсоида вращения: . Рассмотрим сечение y=0. Тогда, как легко видеть, . Чтобы определить tgВ, нужно найти угловой коэффициент нормали в точке Q. Уравнение нормали к кривой F(x ,z) =0 в точке имеет вид

(3)

У нас

поэтому

Следовательно,

Определим отличие геоцентрической широты Ф от геодезической В. Имеем очевидные равенства

. (4)

Второй эксцентриситет эллипса, как мы знаем, определяется следующим образом , поэтому

.

Для Земли второй эксцентриситет мал, поэтому, пренебрегая малыми второго порядка относительно сжатия, получим . Можно также считать, что Учитывая сказанное, получим

Наибольшее отличие геодезической широты от геоцентрической достигается на широте 45° и составляет .

Связь глобальных декартовых координат с геоцентрическими определяется формулами (1). Определим теперь формулы, связывающие декартовы координаты с геодезическими. Это означает, что бы должны определить координаты точки Р через параметры эллипсоида и геодезические широту и долготу.

Поскольку , для определения координат x, y ,z точки Р достаточно, для начала, определить только координаты x и z . то есть все рассуждения проводить только для сечения у =0. Обратимся к рис. 3.

Определим прямоугольные координаты точки Р, расположенной на высоте Н над поверхностью эллипсоида. Сначала определим координаты проекции точки Р на поверхность эллипсоида ( точка Q). Её координаты в сечении Охz равны

Индексом “0” мы отметили принадлежность координат к точке, лежащей на поверхности эллипсоида. Как мы видели

поэтому

Остаётся определить радиус-вектор точки Q. Воспользуемся уравнением эллипса и выполним необходимые преобразования.

(5)

Выразим и через cosB иsinB, для чего воспользуемся приведёнными выше формулами. Определим радиус-вектор точки Q

следовательно,

(6)

Обозначим . (7)

Теперь

(8)

Для произвольного сечения, проходящего через ось вращения ,будем иметь

(9)

Теперь поднимем точку Q на высоту Н и совместим её с точкой Р. Прямоугольные координаты изменятся на

(10)

Окончательно, теперь формулы для пересчёта геодезических координат B, L и Н в прямоугольные x,y,z примут вид

(11)

Здесь , определённый формулой (7) имеет простой геометрический смысл: он равен отрезку нормали, проходящей через точку Q, от этой точки до точки пересечения её с осью вращения эллипсоида. Справедливость этого утверждения предлагается доказать самостоятельно.

Доверь свою работу ✍️ кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой



Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.