Мои Конспекты
Главная | Обратная связь

...

Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Рассмотрим выборку с повторениями



Помощь в ✍️ написании работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Пусть имеется выборка из элементов, причем элементов из них - одинаковые.

 

1. Число различных перестановок на элементах такой выборки равно:

- число перестановок с повторениями на множестве из элементов

2. Сочетание с повторениями из элементов по - неупорядоченная выборка элементов с возвращением из множества, содержащего элементов:

- число различных сочетаний с повторениями из элементов по

3. Размещения с повторениями из элементов по - расположение различных шаров по различным ячейкам

- число различных размещений с повторениями

 

Пример. Сколько различных 4-буквенных слов можно составить из символов ?

Решение. Другими словами, требуется найти число перестановок с повторениями на 4 элементах выборки, в которой два элемента одинаковы:

Пример. Сколько различных перестановок можно составить избукв словаАБАКАН?

Решение. Требуется найти число перестановок на множестве из 6 элементов, среди которых три элемента одинаковы:

.

 

Верно обобщение рассматриваемой формулы: число различных перестановок на множестве из элементов, среди которых имеется

элементов первого вида,

элементов второго вида,

элементов -го вида

равно:

Пример. Сколько перестановок можно получить из букв слова КОЛОКОЛА?

Решение. Требуется найти число перестановок с повторениями на множестве из 8 букв, среди которых:

буква К повторяется 2 раза;

буква О повторяется 3 раза;

буква Л повторяется 2 раза

буква А повторяется 1 раз.

Таким образом, .

 

Пример. Сколькими способами можно составить набор из 5 шоколадок, если имеются шоколадки трех сортов в количестве по 10 штук каждого вида?

Решение. Поскольку при составлении шоколадного набора порядок расположения шоколадок не важен, то используем для подсчета формулу сочетаний с повторениями:

 

Пример. Сколькими способами можно рассадить 7 человек по 9 вагонам?

Решение. Поскольку по условию задачи в один вагон могут сесть несколько человек, и поскольку рассадка зависит от того кто в каком вагоне находится, то используем формулу размещения с повторениями:

Эту же задачу можно решить, применяя комбинаторный принцип умножения: действие – рассадить 7 человек распадается на 7 этапов:разместить первого пассажира, разместить второго пассажира, …, разместить седьмого пассажира. Первый этап – размещение первого пассажира можно выполнить 9 способами, второго пассажира тоже можно разместить 9 способами, и т.д. :

Пример. Сколькими способами можно рассадить 7 человек по 9 вагонам по одному в вагон?

Решение. Поскольку по условию задачи в один вагон могут сесть только один человек, и поскольку рассадка зависит от того кто в каком вагоне находится, то используем формулу размещений без повторений:

Эту же задачу можно решить, применяя комбинаторный принцип умножения: действие – рассадить 7 человек распадается на 7 этапов:разместить первого пассажира, разместить второго пассажира, …, разместить седьмого пассажира. Первый этап – размещение первого пассажира можно выполнить 9 способами, второго пассажира тоже можно разместить 9 способами, и т.д. :

Пример. Сколько различных сигналов можно составить из четырех флажков различных цветов, если каждый сигнал должен состоять не менее чем из двух флажков?

Решение. Составить сигнал можно из двух флажков, из трех или из четырех. Перечисленные ситуации взаимно исключают друг друга (два флажка – это не три и не четыре), поэтому вычислим, сколькими способами можно составить сигнал в каждой из перечисленных ситуаций, и сложим полученные результаты.

Действие – составить сигнал – означает выбрать флажки из четырех и расположить их в определенном порядке. Таким образом, в каждом случае нужно выполнить два этапа: первый - выбрать флажки, второй – расположить выбранные флажки в определенном порядке.

Составляем сигналы из двух флажков: выбрать два флажка из четырех можно различными способами, и расположить выбранные два флажка в определенном порядке можно числом способов. Таким образом, согласно комбинаторному принципу умножения, можно составить различных сигналов из двух флажков.

Составляем сигналы из трех флажков: выбрать три флажка из четырех можно различными способами, и расположить выбранные три флажка в определенном порядке можно числом способов. Таким образом, согласно комбинаторному принципу умножения, можно составить различных сигналов из трех флажков.

Составляем сигналы из четырех флажков: выбрать четыре флажка из четырех можно - одним способом, а расположить выбранные четыре флажка в определенном порядке можно способами. Значит, можно составить различных сигнала из четырех флажков.

Применим теперь комбинаторный принцип сложения: всего существует сигналов из не менее, чем двух флажков.

Пример. Номер автомобиля состоит из трех букв и трех цифр. Сколько различных номеров можно составить, используя 10 цифр и алфавит в 30 букв.

 

Очевидно, что количество всех возможных комбинаций из 10 цифр по 4 равно 10.000.

Число всех возможных комбинаций из 30 букв по две равно .

Если учесть возможность того, что буквы могут повторяться, то число повторяющихся комбинаций равно 30 (одна возможность повтора для каждой буквы). Итого, полное количество комбинаций по две буквы равно 900.

Если к номеру добавляется еще одна буква из алфавита в 30 букв, то количество комбинаций увеличивается в 30 раз, т.е. достигает 27.000 комбинаций.

Окончательно, т.к. каждой буквенной комбинации можно поставить в соответствие числовую комбинацию, то полное количество автомобильных номеров равно 270.000.000.

 

Доверь свою работу ✍️ кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой



Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.