Мои Конспекты
Главная | Обратная связь

...

Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Микроплазменная сварка





Помощь в ✍️ написании работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Наиболее распространенной является микроплазменная сварка. В связи с достаточно высокой степенью ионизации газа в плазмотроне и при использовании вольфрамовых электродов диаметром 1–2 мм плазменная дуга может гореть при очень малых токах, начиная с 0,1 А.

Рисунок. Схема процесса микроплазменной сварки

Специальный малоамперный источник питания (см. рисунок выше) постоянного тока предназначен для получения дежурной дуги, непрерывно горящей между электродом и медным водоохлаждаемым соплом. При подведении плазмотрона к изделию зажигается основная дуга, которая питается от источника. Плазмообразующий газ подается через сопло плазмотрона, имеющее диаметр 0,5–1,5 мм.

Защитный газ подается через керамическое сопло. Плазменная горелка охлаждается водой. Для зажигания дуги в сварочной установке имеются осцилляторы дежурной и основной дуги.

Микроплазменная сварка является весьма эффективным способом сплавления изделий малой толщины, до 1,5 мм. Диаметр плазменной дуги составляет около 2 мм, что позволяет сконцентрировать тепло на ограниченном участке изделия и нагревать зону сварки, не повреждая соседние участки. Такая дуга имеет цилиндрическую форму, поэтому глубина проплавления и другие параметры шва мало зависят от длины дуги, что позволяет при манипуляциях сварщиком горелкой избежать прожогов, характерных для обычной аргонодуговой сварки тонкого металла.

Основным газом, использующимся в качестве плазмообразующего и защитного, является аргон. Однако в зависимости от свариваемого металла к нему могут осуществляться добавки, увеличивающие эффективность процесса сварки. При сварке сталей к защитному аргону целесообразна добавка (8–10%) водорода, что позволяет повысить тепловую эффективность плазменной дуги. Это связано с диссоциацией водорода на периферии столба дуги и последующей его рекомбинацией с выделением тепла на поверхности свариваемого металла. При сварке низкоуглеродистых сталей к аргону возможна добавка углекислого газа, при сварке титана – добавка гелия.

Установки для микроплазменной сварки позволяют осуществлять сварку в различных режимах: непрерывный прямой полярности, импульсный прямой полярности (позволяет регулировать тепловложение), разнополярными импульсами (для алюминия, обеспечивает разрушение оксидной пленки), непрерывный обратной полярности. Наиболее распространенной установкой является МПУ-4у.

К основным параметрам процесса микроплазменной сварки относятся сила тока, напряжение, расход плазмообразующего и защитного газа, диаметр канала сопла, глубина погружения в сопло электрода, диаметр электрода.

Микроплазменная сварка успешно применяется при производстве тонкостенных труб и емкостей, приварке мембран и сильфонов к массивным деталям, соединении фольги, термопар, при изготовлении ювелирных изделий.

Доверь свою работу ✍️ кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой



Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.